93 research outputs found

    Adult Medulloblastoma: Updates on Current Management and Future Perspectives

    Get PDF
    Simple Summary Adult medulloblastoma is an extremely rare tumor of the central nervous system. Standard multimodal treatment, comprising maximal safe surgical resection followed by craniospinal radiotherapy and multi-agent chemotherapy, can improve the prognosis of this disease, producing, however, important acute and long-term toxicities. Herein, we review the state of the art for adult medulloblastoma diagnosis and treatment, presenting novel molecular advances and their therapeutic implications and discussing the central role of hub centers to guarantee the highest quality of care and a better overall outcome for this rare tumor. Medulloblastoma (MB) is a malignant embryonal tumor of the posterior fossa belonging to the family of primitive neuro-ectodermic tumors (PNET). MB generally occurs in pediatric age, but in 14-30% of cases, it affects the adults, mostly below the age of 40, with an incidence of 0.6 per million per year, representing about 0.4-1% of tumors of the nervous system in adults. Unlike pediatric MB, robust prospective trials are scarce for the post-puberal population, due to the low incidence of MB in adolescent and young adults. Thus, current MB treatments for older patients are largely extrapolated from the pediatric experience, but the transferability and applicability of these paradigms to adults remain an open question. Adult MB is distinct from MB in children from a molecular and clinical perspective. Here, we review the management of adult MB, reporting the recent published literature focusing on the effectiveness of upfront chemotherapy, the development of targeted therapies, and the potential role of a reduced dose of radiotherapy in treating this disease

    cIMPACT‐NOW update 7: advancing the molecular classification of ependymal tumors

    Full text link
    Advances in our understanding of the biological basis and molecular characteristics of ependymal tumors since the latest iteration of the World Health Organization (WHO) classification of CNS tumors (2016) have prompted the cIMPACT‐NOW group to recommend a new classification. Separation of ependymal tumors by anatomic site is an important principle of the new classification and was prompted by methylome profiling data to indicate that molecular groups of ependymal tumors in the posterior fossa and supratentorial and spinal compartments are distinct. Common recurrent genetic or epigenetic alterations found in tumors belonging to the main molecular groups have been used to define tumor types at intracranial sites; C11orf95 and YAP1 fusion genes for supratentorial tumors and two types of posterior fossa ependymoma defined by methylation group, PFA and PFB. A recently described type of aggressive spinal ependymoma with MYCN amplification has also been included. Myxopapillary ependymoma and subependymoma have been retained as histopathologically defined tumor types, but the classification has dropped the distinction between classic and anaplastic ependymoma. While the cIMPACT‐NOW group considered that data to inform assignment of grade to molecularly defined ependymomas are insufficiently mature, it recommends assigning WHO grade 2 to myxopapillary ependymoma and allows grade 2 or grade 3 to be assigned to ependymomas not defined by molecular status.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162791/2/bpa12866_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162791/1/bpa12866.pd

    Limitations of current in vitro models for testing the clinical potential of epigenetic inhibitors for treatment of pediatric ependymoma

    Get PDF
    Background: Epigenetic modifications have been shown to play an important role in the classification and pathogenesis of the pediatric brain tumor ependymoma, suggesting they are a potential therapeutic target.Results: Agents targeting epigenetic modifications inhibited the growth and induced the death of ependymoma cells with variable efficiency. However, this was often not at clinically achievable doses. Additionally, DNA methylation profiling revealed a lack of similarity to primary ependymomas suggesting alterations were induced during culture. Toxicity to fetal neural stem cells was also seen at similar drug concentrationsConclusions: Agents targeting epigenetic modifications were able to inhibit the growth and induced the death of ependymoma cells grown in vitro. However, many agents were only active at high doses, outside clinical ranges, and also resulted in toxicity to normal brain cells. The lack of similarity in DNA methylation profiles between cultured cells and primary ependymomas questions the validity of using in vitro cultured cells for pre-clinical analysis of agents targeting epigenetic mechanisms and suggests further investigation using models that are more appropriate should be undertaken before agents are taken forward for clinical testing.Materials and Methods: The effects of agents targeting epigenetic modifications on the growth and death of a panel of ependymoma cell lines was investigated, as well as toxicity to normal fetal neural stem cells. The ependymoma cell lines were characterized using DNA methylation profiling

    Second-line treatment of pediatric patients with relapsed rhabdomyosarcoma adapted to initial risk stratification: Data of the European Soft Tissue Sarcoma Registry (SoTiSaR).

    Get PDF
    BACKGROUND Outcome of relapsed disease of localized rhabdomyosarcoma remains poor. An individual treatment approach considering the initial systemic treatment and risk group was included in the Cooperative Weichteilsarkom Studiengruppe (CWS) Guidance. METHODS Second-line chemotherapy (sCHT) ACCTTIVE based on anthracyclines (adriamycin, carboplatin, cyclophosphamide, topotecan, vincristine, etoposide) was recommended for patients with initial low- (LR), standard- (SR), and high-risk (HR) group after initial treatment without anthracyclines. TECC (topotecan, etoposide, carboplatin, cyclophosphamide) was recommended after initial anthracycline-based regimen in the very high-risk (VHR) group. Data of patients with relapse (n = 68) registered in the European Soft Tissue Sarcoma Registry SoTiSaR (2009-2018) were retrospectively analyzed. RESULTS Patients of initial LR (n = 2), SR (n = 16), HR (n = 41), and VHR (n = 9) group relapsed. sCHT consisted of ACCTTIVE (n = 36), TECC (n = 12), or other (n = 15). Resection was performed in 40/68 (59%) patients and/or radiotherapy in 47/68 (69%). Initial risk stratification, pattern/time to relapse, and achievement of second complete remission were significant prognostic factors. Microscopically incomplete resection with additional radiotherapy was not inferior to microscopically complete resection (p = .17). The 5-year event-free survival (EFS) and overall survival (OS) were 26% (±12%) and 31% (±14%). The 5-year OS of patients with relapse of SR, HR, and VHR groups was 80% (±21%), 20% (±16%), and 13% (±23%, p = .008), respectively. CONCLUSION Adapted systemic treatment of relapsed disease considering the initial risk group and initial treatment is reasonable. New treatment options are needed for patients of initial HR and VHR groups

    Analytical Performance Evaluation of New DESI Enhancements for Targeted Drug Quantification in Tissue Sections

    Get PDF
    Desorption/ionization (DI)-mass spectrometric (MS) methods offer considerable advantages of rapidity and low-sample input for the analysis of solid biological matrices such as tissue sections. The concept of desorption electrospray ionization (DESI) offers the possibility to ionize compounds from solid surfaces at atmospheric pressure, without the addition of organic compounds to initiate desorption. However, severe drawbacks from former DESI hardware stability made the development of assays for drug quantification difficult. In the present study, the potential of new prototype source setups (High Performance DESI Sprayer and Heated Transfer Line) for the development of drug quantification assays in tissue sections was evaluated. It was demonstrated that following dedicated optimization, new DESI XS enhancements present promising options regarding targeted quantitative analyses. As a model compound for these developments, ulixertinib, an inhibitor of extracellular signal-regulated kinase (ERK) 1 and 2 was used

    <i>MYCN</i> amplification drives an aggressive form of spinal ependymoma

    Get PDF
    Spinal ependymal tumors form a histologically and molecularly heterogeneous group of tumors with generally good prognosis. However, their treatment can be challenging if infiltration of the spinal cord or dissemination throughout the central nervous system (CNS) occurs and, in these cases, clinical outcome remains poor. Here, we describe a new and relatively rare subgroup of spinal ependymal tumors identified using DNA methylation profiling that is distinct from other molecular subgroups of ependymoma. Copy number variation plots derived from DNA methylation arrays showed MYCN amplification as a characteristic genetic alteration in all cases of our cohort (n = 13), which was subsequently validated using fluorescence in situ hybridization. The histological diagnosis was anaplastic ependymoma (WHO Grade III) in ten cases and classic ependymoma (WHO Grade II) in three cases. Histological re-evaluation in five primary tumors and seven relapses showed characteristic histological features of ependymoma, namely pseudorosettes, GFAP- and EMA positivity. Electron microscopy revealed cilia, complex intercellular junctions and intermediate filaments in a representative sample. Taking these findings into account, we suggest to designate this molecular subgroup spinal ependymoma with MYCN amplification, SP-EPN-MYCN. SP-EPN-MYCN tumors showed distinct growth patterns with intradural, extramedullary localization mostly within the thoracic and cervical spine, diffuse leptomeningeal spread throughout the whole CNS and infiltrative invasion of the spinal cord. Dissemination was observed in 100% of cases. Despite high-intensity treatment, SP-EPN-MYCN showed significantly worse median progression free survival (PFS) (17 months) and median overall survival (OS) (87 months) than all other previously described molecular spinal ependymoma subgroups. OS and PFS were similar to supratentorial ependymoma with RELA-fusion (ST-EPN-RELA) and posterior fossa ependymoma A (PF-EPN-A), further highlighting the aggressiveness of this distinct new subgroup. We, therefore, propose to establish SP-EPN-MYCN as a new molecular subgroup in ependymoma and advocate for testing newly diagnosed spinal ependymal tumors for MYCN amplification

    EPEN-04. SIOP EPENDYMOMA I: FINAL RESULTS, LONG TERM FOLLOW-UP AND MOLECULAR ANALYSIS OF THE TRIAL COHORT: A BIOMECA CONSORTIUM STUDY

    Get PDF
    IntroductionSurgery and radiotherapy are established childhood ependymoma treatments. The efficacy of chemotherapy has been debated. We report final results of the SIOP Ependymoma I trial, with 12-year follow-up, in the context of a post-hoc analysis of more recently described biomarkers.Aims and MethodsThe trial assessed event free (EFS) and overall survival (OS) of patients aged three to 21 years with non-metastatic intracranial ependymoma, treated with a staged management strategy targeting maximum local control. The study also assessed: the response rate (RR) of subtotally resected (STR) disease to vincristine, etoposide and cyclophosphamide (VEC); and surgical operability. Children with gross total resection (GTR) received radiotherapy of 54 Gy in 30 daily fractions over six weeks, whilst those with STR received VEC before radiotherapy. We retrospectively assessed methylation and 1q status alongside hTERT, RELA, Tenascin C, H3K27me3 and pAKT expression.ResultsBetween 1999 and 2007, 89 participants were enrolled, 15 were excluded with metastatic (n=4) or non-ependymoma tumours (n=11) leaving a final cohort of 74. Five- and ten-year EFS was 49.5% and 46.7%, OS was 69.3% and 60.5%. 1q gain was associated with poorer EFS (p=0.002, HR=3.00, 95%CI 1.49–6.10). hTERT expression was associated with worse five-year EFS (20.0% Vs 83.3%, p=0.014, HR=5.8). GTR was achieved in 33/74 (44.6%) and associated with improved EFS (p=0.006, HR=2.81, 95% confidence interval 1.35–5.84). There was an improvement in GTR rates in the latter half of the trial (1999-2002 32.4% versus 2003-2007 56.8%). Despite the protocol, 12 participants with STR did not receive chemotherapy. However, chemotherapy RR was 65.5% (19/29, 95%CI 45.7–82.1).ConclusionsVEC exceeded the pre-specified RR of 45% in children over three years with STR intracranial ependymoma. However, cases of inaccurate stratification at treating centres highlights the need for rapid central review. We also confirmed associations between 1q gain, hTERT expression and outcome

    PTPRD and CNTNAP2 as markers of tumor aggressiveness in oligodendrogliomas

    Get PDF
    Oligodendrogliomas are typically associated with the most favorable prognosis among diffuse gliomas. However, many of the tumors progress, eventually leading to patient death. To characterize the changes associated with oligodendroglioma recurrence and progression, we analyzed two recurrent oligodendroglioma tumors upon diagnosis and after tumor relapse based on whole-genome and RNA sequencing. Relapsed tumors were diagnosed as glioblastomas with an oligodendroglioma component before the World Health Organization classification update in 2016. Both patients died within 12 months after relapse. One patient carried an inactivating POLE mutation leading to a clearly hypermutated progressed tumor. Strikingly, both relapsed tumors carried focal chromosomal rearrangements in PTPRD and CNTNAP2 genes with associated decreased gene expression. TP53 mutation was also detected in both patients after tumor relapse. In The Cancer Genome Atlas (TCGA) diffuse glioma cohort, PTPRD and CNTNAP2 expression decreased by tumor grade in oligodendrogliomas and PTPRD expression also in IDH-mutant astrocytomas. Low expression of the genes was associated with poor overall survival. Our analysis provides information about aggressive oligodendrogliomas with worse prognosis and suggests that PTPRD and CNTNAP2 expression could represent an informative marker for their stratification.publishedVersionPeer reviewe

    Optimising biomarkers for accurate ependymoma diagnosis, prognostication and stratification within International Clinical Trials: A BIOMECA study

    Get PDF
    BACKGROUND: Accurate identification of brain tumour molecular subgroups is increasingly important. We aimed to establish the most accurate and reproducible ependymoma subgroup biomarker detection techniques, across 147 cases from International Society of Pediatric Oncology (SIOP) Ependymoma II trial participants, enrolled in the pan-European "Biomarkers of Ependymoma in Children and Adolescents (BIOMECA)" study. METHODS: Across six European BIOMECA laboratories we evaluated epigenetic profiling (DNA methylation array); immunohistochemistry (IHC) for nuclear p65-RELA, H3K27me3, and Tenascin-C; copy number analysis via FISH and MLPA (1q, CDKN2A), and MIP and DNA methylation array (genome-wide copy number evaluation); analysis of ZFTA- and YAP1-fusions by RT-PCR and sequencing, Nanostring and break-apart FISH. RESULTS: DNA Methylation profiling classified 65.3% (n=96/147) of cases as EPN-PFA and 15% (n=22/147) as ST-ZFTA fusion-positive. Immunohistochemical loss of H3K27me3 was a reproducible and accurate surrogate marker for EPN-PFA (sensitivity 99-100% across three centres). IHC for p65-RELA, FISH, and RNA-based analyses effectively identified ZFTA- and YAP1- fused supratentorial ependymomas. Detection of 1q gain using FISH exhibited only 57% inter-centre concordance and low sensitivity and specificity whilst MIP, MLPA and DNA methylation-based approaches demonstrated greater accuracy. CONCLUSIONS: We confirm, in a prospective trial cohort, that H3K27me3 immunohistochemistry is a robust EPN-PFA biomarker. Tenascin-C should be abandoned as a PFA marker. DNA methylation and MIP arrays are effective tools for copy number analysis of 1q gain, 6q and CDKN2A loss whilst FISH is inadequate. Fusion detection was successful, but rare novel fusions need more extensive technologies. Finally, we propose test sets to guide future diagnostic approaches

    Genotype–phenotype associations within the Li-Fraumeni spectrum: a report from the German Registry

    Get PDF
    Li-Fraumeni syndrome (LFS) is a cancer predisposition syndrome caused by pathogenic TP53 variants. The condition represents one of the most relevant genetic causes of cancer in children and adults due to its frequency and high cancer risk. The term Li-Fraumeni spectrum reflects the evolving phenotypic variability of the condition. Within this spectrum, patients who meet specific LFS criteria are diagnosed with LFS, while patients who do not meet these criteria are diagnosed with attenuated LFS. To explore genotype–phenotype correlations we analyzed 141 individuals from 94 families with pathogenic TP53 variants registered in the German Cancer Predisposition Syndrome Registry. Twenty-one (22%) families had attenuated LFS and 73 (78%) families met the criteria of LFS. NULL variants occurred in 32 (44%) families with LFS and in two (9.5%) families with attenuated LFS (P value < 0.01). Kato partially functional variants were present in 10 out of 53 (19%) families without childhood cancer except adrenocortical carcinoma (ACC) versus 0 out of 41 families with childhood cancer other than ACC alone (P value < 0.01). Our study suggests genotype–phenotype correlations encouraging further analyses. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13045-022-01332-1
    • 

    corecore